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Abstract— Robotic pouring is an important step in improving
the safety, productivity and repeatability in the biotechnology
industry and generally increasing the effectiveness of robotics
in human based environments. In this work we present a
method to autonomously dispense a precise amount of �uid
using only visual feedback without using precision pouring
instruments such as pipettes, syringes or pourers. We model
circular and rectangular pouring container geometries. We
prove that for square containers we can control the �ow by
only observing the �uid height in the receiving beaker. We show
a systematic approach using a hybrid control scheme that is
robust to the initial amount of �uid in the pouring container and
inconsistent �ow. Speci�cally we present (a) a model for pouring
(b) a model based algorithm to drive a robot arm (c) visual
feedback for regulating the pouring rate. We demonstrate this
using the Rethink Robotics Sawyer manipulator and mvBluefox
MLC202bc camera.

I. INTRODUCTION

One of the main goals in robotics is to assist in repetitive,
laborious, and dangerous tasks. Precise pouring of �uids can
easily fall under each of these categories, examples being
manipulation of hazardous biological �uids, molten metal in
the casting industry, or even the assembly of buffers and
solvents in wet lab research. In each of these examples a
common requirement is that a speci�ed amount of �uid be
poured with precision to a desired amount.

To achieve these precise motions required for pouring,
researchers have used learning models to perform reinforce-
ment and imitation learning to pour [1], [2], [3]. While
effective, limitations of these methods are the number of
trials required to learn the pouring task, reliance on empir-
ical results rather than on analytical guarantees of system
performance, and inability to generalize learned model.

One approach to perform smooth pouring is to minimize
sloshing of the liquid while pouring a predetermined tra-
jectory. Some research proves to suppress sloshing while
pouring using a hybrid shape approach which consists of
proportional gain, notch and a low pass �lter [4], [5], [6], [7].
In this approach, the control input consists of feed forward
expression based on the proposed model, and the hybrid
shape to mitigate sloshing during the pour [6], [7], [8]. Noda
and Terashima tried to overcome the requirement for the
need of an analytical inverse of the dynamical function by
using a numerical look up table for the desired height [9]
and corresponding input. In the above model based examples
[8], [9] load cells were used to provide real time feedback
on poured �uid mass.
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Fig. 1: Experimental setup using the Rethink Robotics
Sawyer manipulator to pour precise amounts of water into a
beaker using vision for feedback control.

Vision is also used for real time feedback by detecting
how much �uid is currently in the pouring container, or in
transit. Mottaghi et al. present a method using learning to
estimate the volume of containers and the amount of �uid
inside them using vision [10]. Yamaguchi et al. present a
method using stereo vision and optical �ow to track �uids
being poured during �ight between containers [11]. The most
recent approach in [12] is the state of the art in liquid
perception because it tracks the liquid while it is poured as
well as the amount in the container using a recurrent neural
network. Compared to our approach [12] is superior in the
perception but more simplistic in the control and without
providing any analytical proof.

Our proposed method extends previous work in that it is
analytically based and we provide a closed form expression
for the control input using a hybrid controller and feedback
linearization. We also show that we are able to detect the
height of the �uid using vision, and due to our pouring
container design speci�cations, we only need to observe
along with the angle of the pouring container, the height
or mass of the �uid in the receiving container and its
derivative. By using a minimum jerk trajectory for the �uid
height, we are able to ensure smooth motion for our end-
effector and �uid height [13]. The rest of the paper is
organized as follows, Section II-A describes the general
pouring model. Section II-B presents our speci�c system
design and justi�cation. Section II-C describes our method of
visual feedback to detect the �uid height. Section III shows
our results and discussion for implementing this method on
the Rethink Robotics Sawyer manipulator shown in Figure 1.





Fig. 4: We use the Rethink Robotics Sawyer manipulator
to precisely pour colored water into a beaker using visual
feedback from a mvBluefox MLC202bc camera.

directly related to these factors are the lip lengthL L;� (hL;� ),
�ow rate q(hL;� ), dividing areaAs;� (� ), and volume below
the lip Vs;� (� ).

Considering three cases: a rectangular lip where the length
is constant, v-shaped lip that has an opening angle , and
circular lip shape, where the entire opening has a radiusR,
the lip shape equations become

L L;�;rect (h) = L L;alpha (7)

L L;�;vshape (h) = 2 h cos(

2

) (8)

L L;�;circ (h) = 2
p

h(2R � h): (9)

The �ow rate q for circular and rectangular lip geometries
are shown in (10), (11) and are found by integrating (6)
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Differentiating these �ow rates with respect to time produces
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Note that by substitutinghL;� from (10) into (12) we can
express (12) as
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For the dividing areaAs;� , we consider two cases: a square
and circular container. In both instances the cross sectional
area is constant in body framez� . The dividing areaAs;� is
de�ned to consist of a major and minor axisa, b, where
rotation occurs about the minor axisb. In the case of a
circular container the area of an ellipse is�ab , Hence the
respective areas are shown in (15), (16), wherea0 is the
elongated axis as a function of the angle�

As;�;circ = �a 0b = �ab sec(� ) (15)

As;�;rect = a0b = absec(� ); (16)

(a) (b)

Fig. 5: Robustness of our vision method to sloshing in fast
trajectories, tracking and foreground images. The height is
estimated as minimum of purple and white rings (K-means
cluster centers), in Figure 5a estimated height is the white
ring.

differentiation with respect to time produces

_As;�;circ = �ab tan( � ) sec(� )! (17)
_As;�;rect = abtan( � ) sec(� )!: (18)

The volume of �uid below the dividing surfaceVs;� is shown
in (19) for rectangular geometry. Note that while other ge-
ometries can be found, this volume is straight forward. Using
the geometry notation shown in Figure 3, with container
width W� , lengthl � , total heightH �
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The derivative with respect to time produces
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Given these parameterizations, we will now show that
the design con�guration in Figure 3 allows for a concise
representation of the dynamical system in (5) in Proposition
(1).

Proposition 1: By using an open, rectangular pouring
container � as shown in Figure 3, and container� with
constant cross sectional areaA � , we can represent (5) in
terms of only transient variablesh� ; _h� ; �; ! .

Proof: Using equations (7), (10), (12), (14), (16), (18),



(20) assuming constantA � , (5) becomes
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Solving for _q produces Equation (22)
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using the relation in (23) we obtain the relation between_q
and •h�

_q = A �
•h� : (23)

Substituting Equation (23) andq = A �
_h� into Equation

(21) produces Equation (24) whose transient terms are only
h� ; _h� ; �; ! .
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We de�ne Q1(� ); Q2(� ); Q3(� )
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which simpli�es (24) to
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With these design parameters we have derived a component
of the system dynamics, we now de�ne the region on which
it is controllable and the hybrid controller used.

Theorem 1:For a experimental setup de�ned in Proposi-
tion 1, with system states
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Fig. 6: Using background subtraction, Sobel gradient detec-
tion and K-means clustering (Figure 6a) we are able to track
the top of the �uid for feedback control. In Figure 6b the
goal was to pour 100ml.

which takes the general form_x = f (x)+ g(x)u. To determine
the region on which this is feedback linearizable we must
determine the conditions of full rank for the matrixM
de�ned in (30), whereadf g(x) represents the adjoint[f; g ]
(lie bracket). And is also feedback linearizable if the span
M 's vectors are involutive
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f g(x)
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: (30)

The matrixM has full rank whenx2 6= 0 , meaning the height
must be changing. Also we can see by inspection thatg(x)
is only left invertible whenx3 6= � �

2 or x3 6= �
2 . Hence we

propose the following hybrid controller
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where the domain conditions here serve as hybrid control
guard and reset function constraints, and these functions are
an identity map. Using feedback linearization the system
reduces to a second order ordinary differential equation, and
solving for the desired statex1 will exponentially approach
the desired point also inD for positive proportional and
derivative gainsK p; K d. We de�ne the term� to be this
input, and have it consist of a feedback and feed forward
term prescribed by the desired trajectory ofx1(t)

� = •x1;des + K p(x1;des � x1) + K d( _x1;des � _x1): (32)

The desired trajectory for the system is a minimum jerk
trajectory for the statex1 which de�nes•x1;des ; _x1;des ; x1;des

where •x1;des is the feed forward term. We de�ne a smooth,
sigmoid trajectory for the �uid height by using a 5th order
polynomial. Such a polynomial with speci�ed end points
characterizes a minimum jerk trajectory, and inherently
minimizes the change in accelerations while respecting the
boundary constraints. The speci�ed endpoints are the initial
height and �nal height both with zero velocity and acceler-
ation. These boundary constraints fully de�ne the trajectory
in closed form [13]. Therefore with (31), (32) we can track
the speci�ed trajectory in domain D.








